Features - * Package in 8mm tape on 7" diameter reels. - * Compatible with automatic placement equipment. - * Compatible with infrared and vapor phase reflow solder process. - * EIA STD package. - * I.C. compatible. # Package Dimensions | Part No. | Lens Color | Source Color | |---------------|-------------|--------------| | LTST-T670TBKT | Water Clear | InGaN Blue | #### Notes: - 1. All dimensions are in millimeters (inches). - 2. Tolerance is ± 0.2 mm (.008") unless otherwise noted. Part No.: LTST-T670TBKT Page: 1 of 10 # LITEON TECHNOLOGY CORPORATION # Property of Lite-On Only # Absolute Maximum Ratings at Ta=25℃ | Parameter | LTST-T670TBKT | Unit | | |---|------------------|-------|--| | Power Dissipation | 120 | mW | | | Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width) | 100 | mA | | | DC Forward Current | 30 | mA | | | Derating Linear From 50°C | 0.4 | mA/°C | | | Reverse Voltage | 5 | V | | | Operating Temperature Range | -55°C to + 100°C | | | | Storage Temperature Range | -55°C to + 100°C | | | #### Suggest IR Reflow Condition: Part No.: LTST-T670TBKT of 10 Page: ### Electrical / Optical Characteristics at Ta=25°C | Parameter | Symbol | Part No.
LTST- | Min. | Тур. | Max. | Unit | Test Condition | |-----------------------------|--------|-------------------|------|------|------|---------|------------------------------| | Luminous Intensity | IV | Т670ТВКТ | 28.0 | 90.0 | | mcd | IF = 20mA
Note 1 | | Viewing Angle | 201/2 | Т670ТВКТ | | 120 | | deg | Note 2 (Fig.6) | | Peak Emission
Wavelength | λΡ | T670TBKT | | 468 | | nm | Measurement
@Peak (Fig.1) | | Dominant Wavelength | λd | T670TBKT | | 470 | | nm | Note 3 | | Spectral Line Half-Width | Δλ | T670TBKT | | 25 | | nm | | | Forward Voltage | VF | T670TBKT | | 3.5 | 4.0 | V | IF = 20mA | | Reverse Current | IR | T670TBKT | | | 100 | μ A | VR = 5V | | Capacitance | С | T670TBKT | | 40 | | PF | VF=0,
f=1MHZ | - NOTE: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve. - $2. \theta 1/2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. - 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. - 4. Caution in ESD: Static Electricity and surge damages the LED. It is recommend to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded. Part No.: LTST-T670TBKT Page: 3 of 10 # LITEON TECHNOLOGY CORPORATION # Property of Lite-On Only # **Bin Code List** | Forward Vo | oltage Unit: | Unit: V @20mA | | | |------------|--------------|---------------|--|--| | Bin Code | Min. | Max. | | | | F5 | 2.70 | 3.00 | | | | F6 | 3.00 | 3.30 | | | | F7 | 3.30 | 3.60 | | | | F8 | 3.60 | 3.90 | | | | F9 | 3.90 | 4.20 | | | Tolerance on each Forward Voltage bin is +/-0.1 volt | Luminous Inte | ensity Unit: | Unit: mcd @20mA | | | |---------------|--------------|-----------------|--|--| | Bin Code | Min. | Max. | | | | N | 28.0 | 45.0 | | | | P | 45.0 | 71.0 | | | | Q | 71.0 | 112.0 | | | | R | 112.0 | 180.0 | | | | S | 180.0 | 280.0 | | | | Т | 280.0 | 450.0 | | | Tolerance on each Intensity bin is +/-15% | Dominant Wavelength | | : nm @20mA | |---------------------|-------|------------| | Bin Code | Min. | Max. | | AC | 465.0 | 470.0 | | AD | 470.0 | 475.0 | Tolerance for each Dominate Wavelength bin is +/- 1nm Part No.: LTST-T670TBKT Page: 4 of 10 #### **Typical Electrical / Optical Characteristics Curves** (25°C Ambient Temperature Unless Otherwise Noted) Fig.1 RELATIVE INTENSITY VS. WAVELENGTH Fig.2 FORWARD CURRENT VS. FORWARD VOLTAGE Fig.3 FORWARD CURRENT DERATING CURVE Fig.4 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT Fig.5 Luminous Intensity vs. Ambient Temperature Fig.6 SPATIAL DISTRIBUTION Part No.: LTST-T670TBKT Page: 5 of 10 #### User Guide #### Cleaning Do not use unspecified chemical liquid to clean LED they could harm the package. If cleaning is necessary, immerse the LED in ethyl alcohol or isopropyl alcohol at normal temperature for less one minute. #### Recommend Printed Circuit Board Attachment Pad Infrared / vapor phase Reflow Soldering #### **Package Dimensions Of Tape And Reel** Note: 1.All dimensions are in millimeters (inches). Part No.: LTST-T670TBKT Page: 6 of 10 ### **Package Dimensions of Reel** #### Notes: - 1. Empty component pockets sealed with top cover tape. - 2. 7 inch reel-2000 pieces per reel. - 3. The maximum number of consecutive missing lamps is two. - 4. In accordance with ANSI/EIA RS-481 specifications. Part No.: LTST-T670TBKT Page: 7 of 10 ### **CAUTIONS** # 1. Application The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices). #### 2. Storage The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are IR-reflowed within one week. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a desiccators with nitrogen ambient. LEDs stored out of their original packaging for more than a week should be baked at about 60 deg C for at least 24 hours before solder assembly. #### 3. Cleaning Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary. #### 4. Soldering Recommended soldering conditions: | Reflow soldering Wave Soldering | | ldering | Soldering iron | | | |---------------------------------|---------------|----------------|----------------|----------------|-----------------| | Pre-heat | 120~150°C | Pre-heat | 100°C Max. | Temperature | 300°C Max. | | Pre-heat time | 120 sec. Max. | Pre-heat time | 60 sec. Max. | Soldering time | 3 sec. Max. | | Peak temperature | 260°C Max. | Solder wave | 260°C Max. | | (one time only) | | Soldering time | 10 sec. Max. | Soldering time | 10 sec. Max. | | | #### 5. Drive Method An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below. LED # Circuit model A Circuit model B LED - (A) Recommended circuit. - (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs #### 6. ESD (Electrostatic Discharge) Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage: - Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs. - All devices, equipment, and machinery must be properly grounded. - Work tables, storage racks, etc. should be properly grounded. - Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling. Part No.: LTST-T670TBKT Page: 8 of 10 ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or "no lightup" at low currents. To verify for ESD damage, check for "lightup" and Vf of the suspect LEDs at low currents. The Vf of "good" LEDs should be >2.0 V@0.1 mA for InGaN product and >1.4 V@0.1 mA for AlInGaP product. # 7. Reliability Test | Classification | Test Item | Test Condition | Reference Standard | |-----------------------|--|---|---| | | Operation Life | Ta= Under Room Temperature As Per Data Sheet
Maximum Rating
Test Time= 1000HRS (-24HRS,+72HRS)@20mA. | MIL-STD-750D:1026 (1995)
MIL-STD-883D:1005 (1991)
JIS C 7021:B-1 (1982) | | Endurance
Test | High Temperature
High Humidity
Storage | IR-Reflow In-Board, 2 Times Ta= 65±5°C,RH= 90~95% *Test Time= 240HRS±2HRS | MIL-STD-202F:103B(1980)
JIS C 7021:B-11(1982) | | | High Temperature
Storage | Ta= 105±5°C
*Test Time= 1000HRS (-24HRS,+72HRS) | MIL-STD-883D:1008 (1991)
JIS C 7021:B-10 (1982) | | | Low Temperature
Storage | Ta= -55±5°C
*Test Time=1000HRS (-24HRS,+72H RS) | JIS C 7021:B-12 (1982) | | Environmental
Test | Temperature
Cycling | $105^{\circ}\text{C} \sim 25^{\circ}\text{C} \sim -55^{\circ}\text{C} \sim 25^{\circ}\text{C}$
30mins 5mins 30mins 5mins 10 Cycles | MIL-STD-202F:107D (1980)
MIL-STD-750D:1051(1995)
MIL-STD-883D:1010 (1991)
JIS C 7021:A-4(1982) | | | Thermal
Shock | IR-Reflow In-Board, 2 Times $85 \pm 5^{\circ}\text{C} \sim -40^{\circ}\text{C} \pm 5^{\circ}\text{C}$ 10mins 10 Cycles | MIL-STD-202F:107D(1980)
MIL-STD-750D:1051(1995)
MIL-STD-883D:1011 (1991) | | | IR-Reflow | Ramp-up rate(183°C to Peak) +3°C/second max
Temp. maintain at 125(±25)°C 120 seconds max
Temp. maintain above 183°C 60-150 seconds
Peak temperature range 235°C+5/-0°C
Time within 5°C of actual Peak Temperature (tp)
10-30 seconds
Ramp-down rate +6°C/second max | MIL-STD-750D:2031.2(1995)
J-STD-020(1999) | | | Solderability | T.sol= $235 \pm 5^{\circ}$ C
Immersion time 2 ± 0.5 sec
Immersion rate 25 ± 2.5 mm/sec
Immersion rate 25 ± 2.5 mm/sec
Coverage $\geq 95\%$ of the dipped surface | MIL-STD-202F:208D(1980)
MIL-STD-750D:2026(1995)
MIL-STD-883D:2003(1991)
IEC 68 Part 2-20
JIS C 7021:A-2(1982) | #### 8. Others The appearance and specifications of the product may be modified for improvement without prior notice. Part No.: LTST-T670TBKT Page: 9 of 10 #### 9. Suggested Checking List #### Training and Certification - 1. Everyone working in a static-safe area is ESD-certified? - 2. Training records kept and re-certification dates monitored? #### Static-Safe Workstation & Work Areas - 1. Static-safe workstation or work-areas have ESD signs? - 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V? - 3. All ionizer activated, positioned towards the units? - 4. Each work surface mats grounding is good? #### Personnel Grounding - 1. Every person (including visitors) handling ESD sensitive (ESDS) items wears wrist strap, heel strap or conductive shoes with conductive flooring? - 2. If conductive footwear used, conductive flooring also present where operator stand or walk? - 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*? - 4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs? - 5. All wrist strap or heel strap checkers calibration up to date? Note: *50V for Blue LED. #### **Device Handling** - 1. Every ESDS items identified by EIA-471 labels on item or packaging? - 2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation? - 3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items? - 4. All flexible conductive and dissipative package materials inspected before reuse or recycles? #### Others - 1. Audit result reported to entity ESD control coordinator? - 2. Corrective action from previous audits completed? - 3. Are audit records complete and on file? Part No.: LTST-T670TBKT Page: 10 of 10